
Theoret. Chim. Acta (Berl.) 63, 1-8 (1983) 
THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1983 

Localized States in Polymeric Molecules III 
The Electronic Structure of Polyacetylene* 
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The Transfer  Matrix approach is used to treat  the relaxed defect problem in 
trans-polyacetylene.  We use a particular choice of parametr izat ion for the 
hopping integrals, which is related to the existence of solitons in this material,  
to discuss its electronic structure. We obtain closed expressions for the density 
of states and for the wavefunctions associated to the localized state at any 
site of the chain. 
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1. Introduction 

Polymers have been subject of intensive studies during the past decade due to 
the important  role they play in different areas of biological, chemical and physical 
sciences. There  is an increasing evidence that several fundamental  processes are 
intrinsically related to the specific details of the electronic structure of these 
molecules. In this context localized states induced by conformational  changes, 
or associated to the presence of impurity or defect, are of great significance. For 
instance the induced-fit changes caused by substrate molecules modify the spacial 
configuration of enzymes which are essential to catalytic reaction [1]. Small 
concentrations of transition e lement  ions in the metal lo-proteins have an effect 
of catalysing electron transfer processes. On the other hand, the existence of 
defect can greatly modify the electrical conductivity of these molecules. In fact, 
one of the most  studied polymers  is trans-polyacetylene,  trans-(CH)x, whose 
conductivity experiments  an enhancement  over  t0  to 12 orders of magnitude 
by effect of doping [2]. 
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The purpose of papers I and II of this series [3, 4] was to apply the Transfer-Matrix 
(TM) approach to study the electronic structure of polymeric molecules where 
the breaking of the periodic regular structure may occur. In this work we will 
be interested in the study of localized states in trans-(CH)x which are produced 
by the breaking of its regular bond alternation. This type of defect has been 
connected, by Su, Schrieffer and Heeger  (SSH), to the existence of soliton in 
this material [5]. Very recently the TM approach has been applied to study a 
single site defect (see Fig. lb)  in trans-(CH)x [6] (the same model has been 
studied by other  authors using different techniques) [7, 8]. Although the 
simplified model for the defect reproduces qualitatively the main features of the 
electronic structure of the system it is well known [5, 9] that the defect region 
has an extension of several CH sites. In the presenl; work we use TM approach 
to handle the relaxed defect problem, allowing that modification of the regular 
polymeric structure occur for an arbitrary number of sites. 

In the next sections we present a model hamiltonian, discuss the electronic 
properties of the system and briefly comment  our results on the light of the 
experimental data of Weinberg et al. [9] for the EP R linewidth of polyacetylene. 

2. Model Hamiltonian 

We consider a model Hamiltonian based on the tight-binding approximation for 
the ~--orbitals written as. 

H = y  ,c?ci +Z (v,c?G +c.c.) (1) 
i q 

the operator C+(C i )  creates (destroys) a 7r-orbital at site i. We choose the 
eigenenergies ei to be zero since all radicals that constitute the polyacetylene 
are of the same type (CH). The hopping integrals V~j are assumed to be different 
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Fig. 1. a. Regular polyacetylene, b. Breaking of regular bond alternation is assumed to be confined 
to a single site 
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than zero only for nearest-neighbours (i.e. / = i 4- 1). The pure dymerized poly- 
acetylene structure (Fig. la)  can be modeled by considering that the hopping 
integrals take alternate values V1 and 1/2, which represent  a single or double 
bond. This problem can be easily solved by the TM method.  All matrix elements  
of the Green ' s  function in the site representat ion can be obtained f rom Dyson 's  
equation 

E G  = 1 + H G  (2) 

and the spectrum associated with the model  Hamil tonian is constituted by two 
bands corresponding to the regions [ - (1  +/3), - ( r  and [ ( /3-1) ,  (/3 + 1)], 
where we have defined r  V2/VI  and all energies are expressed in units of V~. 
In the case of polyacetylene/3 = 1.32 (to fit data), and throughout  this paper  we 
restrict our  discussions to the situation r > 1. The gap of width 2( r  is 
associated to a Peierls'  instability characteristic to this type of 1-D systems. 

The local density of states is the same as the one obtained by SSH, and in the 
band region is given by 

00 = - -  Im (3) 
,/[~ 2 -  (1 +fl)2][(fl - 1)2-  ~23 

being zero otherwise. 

The lattice defect in Fig. 2 is introduced in our model  by arbitrarily defining the 
reference site 0 as the one associated to the middle of the defect. For  simplicity 
we assume the extension of the defect to be 2u + 1, and take u as an odd number.  
Using Dyson ' s  equation in the one orbital per site basis we obtain the following 
set of coupled linear equations for the matrix elements  of the Green ' s  functions 
associated to the defect region. 

EGoo = 1 + 2 a l  G~o 

E G l o  = a l  Goo+a2G2o 

EG20 = 0:2 Glo q-a3 G3o (4) 

EG,,o = a~Gv-l .o + W2 G,,+l,O 

where as(1-< s-< u) are the hopping integrals, in the defect region. The specific 
choice of the parameters  a will be discussed below. Outside the defect region 
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Fig. 2. Defect of size 2u+l =7 in a = -'- 
trans-polyacetylene chain defec f reg ion 
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we have the regular alternating chain and therefore use of Dyson ' s  equation 
produces the two general expressions: 

EG2.,o = V2 G2n-l,o + V1 G2.+1,0 (5) 

EG2.+I,0 = V1 G2..o + I/2 G2.+2,0 

where 2n - 1 -> u. 

For this region we can define the transfer functions T1 = G2.,o/G2.+l.o and 
7'2 = G2n,o/G2.-l.O. We can use Eq. (4) to obtain 

e 2 - ( /3  2 - 1)+~/[s 2 - (/3 + 1)2)(s 2 - (/3 - 1) 2] 
T1 - (6) 

2e 

and 

T2= 
e - T 1  

The choice of signs of the transfer functions (5) is made as usual [10], leading 
to minus sign above (below) the conduction (valence) band, and plus sign in the 
gap region. Within the bands the sign is chosen as to lead to a positively defined 
density of states. 

Using the definition of T1 and T2, one can solve the equations above for Goo 
to obtain 

1 
a o o  = 

ao(e) 
where 

2 ( 0 / 1 )  2 
Ao(e) = e (7) 

2 
0 /2  

2 
0/3  

2 
O~v 

Ao(e = 0 ) - - e  (1 4 2(0/1)22 (8) 
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As expected the continuous part  of the spectrum is in the same energy region 
as that of the defect-free chain since it is connected to imaginary part  of / '2. 
Therefore  it remains to study the existence of localized states outside that region. 
It is very simple to verify that near  the middle of the gap (e = 0), 



Electronic Structure of Polyacetylene 5 

\ p 

I 
J 

I\ z /  

Fig. 3. Density of states for the defect-free chain (dashed line) and for the cases u = 1 and 2u + 1 = 25 
(continuous lines). The number  of structures observed on the latter two cases are associated to the 
number  of sites affected by the defect 

which shows the existence of a pole associated to a symmetric mode at this value 
of energy. This state splits off symmetrically from the top of the valence band 
and from the bottom of the conduction band (Fig. 3). It is also easily shown that 
no other poles occur. We must mention that the pole at the middle of the gap 
must be relevant for any description of optical, electronic or transport properties 
of this material, and that the energy of this electronic state is the same as the 
energy of the localized state associated by SSH to solitons. Furthermore the 
density of states presents structures which are associated to the number of defects 
in the chain. 

3. Wavefunctions 

A map of the wavefunction associated to the localized mode can be obtained 
by calculating the residues Rq of the pole at e-* 0, associated to the matrix 
elements Gq of the Green's function. The signs and the relative amplitudes of 
the wavefunctions at two sites i and j are given by [11] 

~i Rii 
- -  = - -  ( 9 )  r R~j 

and l~iI 2 = R , .  

Inside the defect region the residues can be easily obtained by solving Eqs. (4) 
for the off-diagonal elements Gs,0, where s -< u; in fact, 

G s ' ~  c~A~e))G~176 

where 
2 

A p - 1  ( e ) = e  OLp 
Ap (e) 

and 

A~(e) = e -BT2 

A straightforward calculation 
(132-1)/3-ae -1 and of course 

( 1 - < p - u )  

(10) 

gives Tl(e - , 0 ) = - e ( f 1 2 - 1 ) - l ~ 0 ,  T2(e --->0)= 
TIT2 = - 3  a. Using these results in expression 
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(10) the residues in the defect region (s -< u) can be readily obtained as 

Rs ,o=(- )s /2(  f l  aP-1 )Roo  evens  
p=2 Ogp / 

(even) 

Rs,0 = 0 odd s 
(11) 

Outside the defect region the wavefunction associated to the localized mode can 
be also easily calculated by noting that 

G~+l,O = T2 G~,o 

Gv+2,o = T1T2 Gv,o 

G ~+3,0 = (T1T2) T2 G~,0 (12) 

From Eqs. (10) and (12) one can see that 

Rv+l,o = - a V  R ~-1,o (13) 
t3 

and therefore using Eqs. (9) and (13) 

O/v 
~.+1 = - ~-6~-1 (14) 

At sites n -> u, the transfer matrices can be used to connect different sites, resulting 

6~+2p = (T1T2) ~ 'T I  0~+i 
(12) 

0.+2p+I = (T1T2)OOv+l p -> 1 

This clearly shows that the wave function still vanishes at the odd sites and for 
the even sites decays as/3-o outside the defect region. 

4. Parametrization of the Hopping Integrals 

Since one of the main interests in the study of the electronic structure of 
trans-(CH)x is related with the soliton properties, we follow SSH assuming that 
the presence of a soliton of width l in the defect region leads to a specific choice 
of hopping integrals, given by 

an+l =- t . , .+l  = t o -  k (u.+l - u . )  (13) 

To fit the experimental data [5] we take k = 4 . 1 e V / / ~ ,  - 2 . 5 e V  and u0 = 
0 . 0 7 3 / ~ .  In the SSH calculation the size of the defect (2v +1)  and the 
soliton width (l) are determined by minimizing the energy of the system through 
the use of a specific trial function; this leads to typical values of v - 2 5  and l -  7. 
It is important to mention that any physical choice for the parametrization must 
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lead to a smoo th  connec t ion  be tween  the hopping  integrals inside and outside 

the defect  region.  

5. Results and Discussion 

SSH based on a W K B - t y p e  of approximat ion ,  suggested the fo rm 

OLp 
tO,,+1 = - ~-  t),,-1 (14) 

to the wavefunc t ion  of the localized state associated to the defect.  In  Fig. 4 we 
compare  this wavefunct ion  with the one  we have ob ta ined  for  the o p t i m u m  
values u = 25 and l = 7. One  can see that  Eq.  (14) is a good  approximat ion  for  
the large n region while overes t imat ing the densi ty of probabi l i ty  for  the region 
close to the center  of the defect.  

Since the hyperf ine splitting at site n is given by 

aeer - 1 0  (n)l  2 (15) 

one  can expect  that  our  results should lead to a bet ter  ag reemen t  with the 
exper imental  da ta  for  the spin resonance  l inewidth of trans-(CH)x [9]. 

To  illustrate the effect of the relaxat ion of the defect,  we also plot  in Fig. 4 the 
, = 1 case [6]. 

As  a final c o m m e n t  we must  ment ion  that  this type of solut ion for  the relaxed 
defect  p rob lem is different than  that  previously ob ta ined  by  SSH and to our  
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Fig. 4. Probability density associated to the localized state: ( 
( . . . . .  ) SSH wavefunction (Ref. [5]) 

)u = 25, l= 7 ; ( - - - ) u  = 30, l= 10; 
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knowledge this problem has not been treated by different techniques. The TM 
method proves to be very adequate to treat this type of problem, since it gives 
closed analytic solution for the electronic structure of the polymer, and it can 
be extended to treat more complicated problems such as impurity and doping 
in this material. 
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